1. 



Diagram NOT accurately drawn
(a) Work out the size of an exterior angle of a regular pentagon.
$\qquad$ .${ }^{\circ}$

The area of the pentagon is $8560 \mathrm{~mm}^{2}$.
(b) Change $8560 \mathrm{~mm}^{2}$ to $\mathrm{cm}^{2}$.
$\qquad$

Each side of another regular pentagon has a length of 101 mm , correct to the nearest millimetre.
(c) (i) Write down the least possible length of each side.
$\qquad$ mm
(ii) Write down the greatest possible length of each side.
$\qquad$
2. A plane is flying at a speed of 1440 kilometres per hour.

How long, in seconds, will the plane take to fly a distance of 1 kilometre?
0.4 seconds 2.4 seconds 2.5 seconds $\quad 4$ seconds $\quad 24$ seconds

A
B
C
D

## E <br> (Total 1 mark)

1. (a) 72

2

M1 for $360 \div 5$ oe
Al for 72
(b) 85.6
$8560 \div(10 \times 10)$
M1 for $8560 \div(10 \times 10)$ oe A1 for 85.6
(c) (i) 100.5

2
Least length $=100.5$
B1 for 100.5
(ii) 101.5

Greatest length $=101.5$
B1 for 101.5 or 101.499 or better
2. C

## 1. Mathematics A Paper 3

In part (a), there seemed to be considerable confusion about whether interior or exterior angles sum to $360^{\circ}$. Many of those who worked out $360 \div 5$ then spoilt their method by subtracting the result of this calculation from $180^{\circ}$. Less than $15 \%$ of candidates answered part (b) correctly as the majority chose to divide 8560 by 10 . Even some of those candidates who divided by 100 did not obtain 85.6. In part (c) candidates had most success with the lower bound. The concept of upper bound was not well understood and the majority of candidates gave a number below 101.5 , such as 101.4 or 101.49.

## Mathematics B Paper 16

In part (a) many candidates correctly worked out $360 / 5$ but then subtracted from 180 , giving an answer of $108^{\circ}$, showing a lack of understanding of interior and exterior angles of a polygon.
Only a quarter of the candidature gained full marks in this part.
The success in part (b) showed a marked improvement on last year but still only a minority ( $16 \%$ ) dividing by 100 ; the vast majority dividing by 10 to give $856 \mathrm{~cm}^{2}$.
Part (c) $35 \%$ correctly identified the least value as 100.5 mm , but only $12 \%$ gained the mark for the greatest possible length.
2. No Report available for this question.

